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In this paper we describe a new approach to implement theO(N) fast multipole
method andO(N log N) tree method, which uses pseudoparticles to express the po-
tential field. The new method is similar to Anderson’s method, which uses the values
of potential at discrete points to represent the potential field. However, for the same
expansion order the new method is more accurate.c© 1999 Academic Press

1. INTRODUCTION

The tree algorithms [2, 3] are now widely used in the astrophysical community. For as-
trophysical simulations, the tree algorithms are particularly suitable because of the adaptive
nature of the algorithm.

However, the use of tree algorithms in astrophysics has been limited to problems with
relatively short timescales, such as collisions of two galaxies or large scale structure for-
mation of the universe. This is mainly because of the high calculation cost associated with
high-accuracy calculation. Existing implementations of the Barnes–Hut treecode use only
up to quadrupole moment. Therefore the calculation cost rises rather quickly when high
accuracy is required.

As in the case of the fast multipole method (FMM) [6], it is possible to implement higher
order multipole expansion to achieve high accuracy. However, the translation formulae for
multipole expansion are rather complex and difficult to program.

In this paper, we describe a new method of implementing FMM or the tree method
with high order multipole expansion. The basic idea is extremely simple. In the multipole
expansion, we approximate the potential field generated by a clump of particles by multipole
expansion. We approximate the potential field back again by a distribution of particles. This
approximation offers many advantages over traditional FMM which uses the coefficients of
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multipole expansion themselves. In this paper we describe the basic idea and formulae in
two and three dimensions and discuss the relation between the proposed method, traditional
FMM, and Anderson’s method [1] which is closely related to the the proposed method.

This paper is organized as follows. In Section 2, the basic structure of the tree algorithm
and FMM are summarized. In Section 3, the mathematics of the new method is presented in
two and three dimensions. In Section 4, the result of some numerical tests for the truncation
error is presented. Section 5 is for discussions and Section 6 sums up.

2. TREE ALGORITHM AND FMM

2.1. The Tree Algorithm

The basic idea of the tree algorithm is to replace the gravitational forces from distant
particles with the force from their center of mass, or with multipole expansion if high
accuracy is desired. Particles are organized into an octree structure, with the root node
covering the entire system and leaves corresponding to each particles.

The force on a particle from a node is defined (and calculated) recursively. If the node
and particle are well separated (in terms of the error of the multipole expansion), the force
from the node to the particle is calculated by evaluating the multipole expansion of the node
at the location of the particle. If they are not well separated, the force is evaluated as the sum
of the forces from children of the node. The calculation cost of the force on one particle is
O(log N), since the cost is proportional to the number of levels of the tree.

In order to use the multipole expansions of the nodes, they must be precomputed. The
expansion coefficients for a node can be recursively calculated from those of children nodes.
The calculation cost of this part isO(N).

For details of implementation, see [13]. Salmonet al. [15] describes the implementation
of the tree algorithm on distributed-memory parallel computers.

2.2. Fast Multipole Method

In the tree algorithm, the particles which generate the gravitational potential and the
particles which feel the potential are not symmetric. The particles which generate potential
are treated as clumps whenever possible. However, calculations of the forces on two particles
are totally independent, even though the two particles are in small distance.

The basic idea of FMM (fast multipole method [6, 7]) is to locally expand the potential
field and use that expansion to obtain the forces on multiple particles. Figure 1 shows the
relation between the tree algorithm and FMM.

Since neighboring particles share the same expansion, the scaling of the calculation cost
changes fromO(N log N) of the tree algorithm toO(N). However, for similar accuracy,
the actual calculation cost of FMM is significantly higher than that of the tree algorithm,
even for very large number of particles. [4]

The fundamental reason for the relatively high cost of FMM is that the scaling with
the order of the expansion is different. In three dimensions, the calculation cost of the
tree algorithm isO(p2), wherep is the order of the multipole expansion. The number of
independent terms of the spherical harmonics of orderp is p2. Since the evaluation of terms
can be done using recurrent relation, the calculation cost is proportional to the number of
terms. On the other hand, the calculation cost of FMM isO(p4), since the translation of
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FIG. 1. Approximations in tree (top) and FMM (bottom).

the multipole expansion to the local expansion requires the calculation cost proportional to
the square of the number of terms.

Of course, it is possible to reduce thisO(p4) scaling toO(p2), by increasing the number
of particles at the lowest cell. Also, it is possible to apply FFT to the translation [5] to
reduceO(p4) scaling toO(p2 log p). When these two are combined, the resulting scaling
is O(p

√
log p). However, it should be noted that FFT is advantageous only for very large

values ofp. Even for pretty large values ofp, the gain by FFT does not exceed a factor of
two. In addition, FFT works fine for a non-adaptive variant of FMM, but might not work
so well for an adaptive version.

2.3. Anderson’s Method

At present, FMM does not offer a clear advantage in performance compared to the tree al-
gorithms. One of the reasons is that the mathematics used in FMM is much more complex and
therefore it is more difficult to implement FMM than to implement the tree algorithm. As a re-
sult, relatively small number of implementations exist for FMM. These implementations are
not widely used and not very highly optimized. Since FMM is a complex algorithm, there
are many small places which can easily lead to rather large inefficiency. The tree algorithm
is much simpler and therefore easier to achieve high efficiency.

Anderson [1] proposed an alternative formulation of FMM which is based on Poisson’s
formula. In two dimensions, the gravitational potential outside a disk of radiusa containing
particles is expressed as

φ(r, θ) = GM log(r )+ 1

2π

∫ 2π

0
φ(a, s)

[
1− (a/r )2

1− 2(a/r ) cos(θ − s)+ (a/r )2
]
ds, (1)

whereG is the gravitational constant,M is the total mass of the particles in the disk, and
(r, θ) is the position in polar coordinate. This formula gives the solution of the boundary
value problem of the Laplace equation.

In order to use formula (1) as a replacement of the multipole expansion, the integral must
be replaced by some numerical quadrature. The “best” method for the numerical integration
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over a circle is to distribute the points in equal spacing and sum the values on these points
with equal weights. When we use 2p+ 1 points to sample potential, the integration should
give exact values forpth order terms in multipole expansion. Note that thepth term in the
multipole expansion corresponds to thepth term in the Fourier expansion of the potential
on the circleφ(a, s).

Anderson found that the naive use of the numerical quadrature in combination with
formula (1) gives an unacceptable result. The reason is that a finite number of sampling
points introduces fictitious high-frequency terms in Fourier components. In order to suppress
high-frequency terms, we should truncate the multipole expansion at orderp. In other words,
formula (1) should be replaced by

φ(r, θ) = GM log(r )+ 1

2π

∫ 2π

0
φ(a, s)

×
[

1− (a/r )2−2(a/r )M+1 cos((M+1)(θ −s))+2(a/r )M+2 cos(M(θ −s))

1−2(a/r ) cos(θ −s)+ (a/r )2
]
ds. (2)

With this modification, Anderson successfully used Poisson’s formula to implement
FMM. The local expansion can also be given in a similar form.

In three dimensions, the outer and inner expansions are given by

9(x) = 1

4π

∫
S

[ ∞∑
n=0

(2n+ 1)

(
a

r

)n+1

Pn(s · x/|x|)
]
9(as) ds, (3)

and

9(x) = 1

4π

∫
S

[ ∞∑
n=0

(2n+ 1)

(
r

a

)n

Pn(s · x/|x|)
]
9(as) ds. (4)

In actual implementation, the infinite sum must also be truncated at the order of the inte-
gration scheme used.

In two dimensions, the trapezoidal rule is optimum and is directly related to the Fourier
expansion. However, in three dimensions, the way to assign points on a sphere is not unique.
Anderson followed the formula given in [11], which claims to have constructed 5th, 7th,
9th, 11th, and 14th order integration formulae with 12, 24, 32, 50, and 72 points. Recently,
Hardin and Sloane [9] suggested a complete set of the achievable orders for integration
schemes with up to 100 points. They called integration schemes which achieved ordert as
t-designs. Table I gives a summary of their result. Note that aDth order scheme (D-design)
can express spherical harmonics of the order only up toD/2 [1].

For orders 2, 3, and 5, the corresponding distributions of points are the vertices of tetra-
hedron(K = 4), octahedron(K = 6), and icosahedron(K = 12).

Blackston and Suel [4] implemented both the classical FMM and Anderson’s method
and found that for similar accuracy the latter is faster typically by a factor of few.

TABLE I

Number of PointsK and Achievable OrderD

D 1 2 3 4 5 6 7 8 9 10 11 12 13
K 2 4 6 (12) 12 (24) 24 36 50 60 70 84 94
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The most significant practical advantage of Anderson’s method is the ease of the im-
plementation. The classical FMM in three dimensions requires rather complex formulas to
be implemented for the shifting the center of the the multipole expansion (“M2M” part),
translation of the multipole expansion to local expansion (“M2L” part), and shifting the
center of the local expansion (“L2L” part). In Anderson’s method, all shifting and transla-
tions are realized by evaluating the potential on the sample points on the sphere. Thus, all
mathematics are confined into formulae (4) and (3).

3. PSEUDOPARTICLE MULTIPOLE METHOD

In Anderson’s method, the multipole expansion of the potential due to a clump of particles
is effectively expressed in terms of the values of potentials on a sphere surrounding the
particles. The potential outside the sphere is given by the surface integral on that sphere,
which is then approximated by the sum over sampling points. This method, though elegant,
appears to be rather indirect.

An alternative approach would be to use multiple particles to represent the multipole
expansion. The basic idea here is to place small number of pseudoparticles which reproduce
the multipole expansion of the original physical particles. In the following, I first present
the theory in two dimensions, and then that in three dimensions.

3.1. Theory in Two Dimensions

In two dimensions, the multipole expansion of the gravitational field due to one particle
is given by

φz0(z) = m log(z− z0) = m log(z)−m
∞∑

k=1

(z0/z)k

k
, (5)

wherez0 andz are the position of the particle and position at which to evaluate the potential
in the complex plane, andm is the mass of the particle. Here we use the system of units
where the gravitational constantG is unity. This formula converges if|z|> |z0|.

If we haveN particles with massmi at locationszi (|zi |<a), the potential field outside
the circle of radiusa is expressed as

φ(z) = M log(z)−
∞∑

k=1

αk

k
(a/z)k, (6)

whereM is the total mass of particles andαk is defined as

αk =
N∑

i=1

mi (zi /a)
k. (7)

Our goal is to find an efficient way to placeK pseudoparticles to approximate the po-
tential fieldφ. In theory, the total number of freedoms we can attain withK particles is
3K . Therefore, with arbitrary assignment of mass and position,K particles should be able
to represent multipole expansions of up top= [(3K − 1)/2], where [x] denotes the max-
imum integer which does not exceedx. However, in order to determine such an arbitrary
distribution of pseudoparticles, we have to solve the system of nonlinear equations with
2p+ 1 variables, and the calculation cost would be at leastO(p3). In addition, it is not
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clear whether or not an acceptable solution exists. In the following, we describe a more
systematic approach in which we do not have to solve nonlinear equations.

In Anderson’s method, potential is calculated at equispaced points on a circle. In the
same splits, here we place particles in a ring, and only allow the masses of particles to
change. This implies that we use onlyK out of 3K degrees of freedoms, and we need
2p+ 1 particles to express the multipole expansion coefficients. However, with this choice
we can determine the mass of these 2p+ 1 particles withO(p2) or O(p log p) calculation
cost.

Consider the mass distribution of a ring of radiusr . The multipole expansion coefficients
are given by

αk = (r/a)k
∫ 2π

0
eikθρ(θ) dθ, (8)

whereρ is the line density of mass at polar coordinate(r, θ). Thus, from the expansion
coefficientsαk,m(θ) can be calculated by evaluating the Fourier series

ρ(θ) = 1

2π

(
a

r

)k ∞∑
k=0

αke−ikθ . (9)

When we approximate this continuousm by 2p+ 1 discrete points atθ j = 0, 2π/(2p+ 1),
4π/(2p+ 1), . . . ,mj is given by

mj = 1

2p+ 1

(
a

r

)k p∑
k=0

αke−ikθ j . (10)

Because of the nature of the Fourier series, thesemi express exact values of multipole
expansions up topth order. The potential outside this circle can be calculated as the sum
of the potentials by these particles as

φ(z) =
2p+1∑
j=1

mj log(z− zj ), (11)

wherezj = re−2i j π/(2p+1).
In the case of the tree algorithm, we can use Eq. (11) to calculate the gravitational

interaction between a node and a particle.
In the M2M part, which is the same for both the tree algorithm and FMM, we still have

to construct the multipole expansion or particle representation around the center of a node
from those of the child nodes. Since the child nodes are already represented by particles,
we can use Eq. (7) to obtain the expansion coefficients of the parent node.

Alternatively, we can eliminate the use of the multipole expansion coefficient by calcu-
lating the mass of pseudoparticles directly from the mass of physical particles (or the mass
of the pseudoparticles in child nodes). We can derive the formula to calculatemj directly
from mi by combining Eqs. (7) and (10)

mj = 1

2p+ 1

p∑
k=0

n∑
i=1

mi (zi /zj )
k

= 1

2p+ 1

n∑
i=1

mi
1− (zi /zj )

p+1

1− zi /zj
. (12)
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For the tree algorithm, this is the end of the story. In the case of FMM, we still have
to specify the algorithms for the M2L part and L2L part. We can use either Anderson’s
method or standard harmonic expansion. For local expansion, Anderson’s method is simpler
to implement than the spherical harmonics.

3.2. Theory in Three Dimensions

The formulation for three dimensions is essentially the same as that for two dimensions,
except that we need to use spherical harmonics instead ofzk. The expansion coefficients
αm

l are expressed as

αm
l =

N∑
i=1

mi r
l
i Y
−m
l (θi , φi ), (13)

wheremi is the mass of particlei and (ri , θi , φi ) is its polar coordinate. The function
Ym

l (θ, φ) is the spherical harmonics of degreel , which is expressed as

Ym
l = (−1)m

√
2l + 1

4π

(l − |m|)!
(l + |m|)! Pm

l (cosθ)eimφ. (14)

Here,Pm
l is the associated Legendre function of degreel and orderm. Using theseαm

l , the
potential at position(r, θ, φ) is given by

8(r, θ, φ) =
∞∑

l=0

l∑
m=−l

αm
l

r l+1
Ym

l (θ, φ). (15)

Our goal here is to obtain a mass distributionρ(θ, φ) on a sphere of radiusa which
satisfies

αm
l =

∫
S
ρ(θ, φ)Y−m

l (θ, φ)dS, (16)

whereS denotes the surface of the sphere. Because the spherical harmonics comprise an
orthonormal system, thisp is expressed as

ρ =
∞∑

l=0

l∑
m=−l

αm
l Y∗−m

l . (17)

If we useK points on a sphere, their masses are calculated by

mj = 1

4πK

p∑
l=0

l∑
m=−l

αm
l Y∗−m

l . (18)

The series expansion must be truncated at a finite value as we’ve seen in the case of two
dimensions. As discussed by Anderson [1], the cutoff order must be [t/2], if K points form
a sphericalt-design.

As in the case of two dimensions, we can directly translate the positions and masses of
physical particles to that of pseudoparticles. The formal expression is a triple summation
over i, l , and m. However, we can simplify it using the addition theorem of spherical
harmonics. The addition theorem is

Pl (cosγ ) = 4π

2l + 1

l∑
m=−l

Ym
l (θ, φ)Y

−m
l (θ ′, φ′), (19)
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whereγ is the angle between two vectors with directions(θ, φ) and(θ ′, φ′). Using this
addition theorem,mj is expressed as

mj = 2l + 1

K

N∑
i=1

mi

p∑
l=0

(ri /r )
l Pl (cosγ ), (20)

whereγ is the angle between the direction of physical particlei and pseudoparticlej .
The potential due to physical particles is approximated by the sum of potentials due to

these pseudoparticles.

4. NUMERICAL EXAMPLES

Figure 2 shows the decay of the error in two dimensions, for various choices of expansion
order and geometry. Here we calculate the absolute error in the potential between two
particles. One is located at (1, 0). The other is located at(r, θ), wherer is varied from 1
to 10 in each panel andθ = 0, π/2, 2π/3, andπ for four panels, respectively. As is clearly

FIG. 2. The absolute error of potential calculated using classical FMM and the pseudoparticle method. The
error of the potential by one particle at position (1, 0) is plotted as the function of the distance ofr . Solid and
dashed curves denote the pseudoparticle method and classical FMM, respectively. In each panel, four curves give
the results forp= 2, 4, 8, and 16 (top to bottom). Four panels are result for the direction angle 0 (top left), 2π/3
(top right),π/2 (bottom left),π (bottom right), respectively.
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seen, for all cases the new method achieves the theoretical order. Its error is slightly larger
than that of direct evaluation of multipole expansion, but the difference is small.

Note that we could make the result obtained by the new method to be identical to the
direct evaluation of multipole expansion, by truncating the pairwise potential to the order
of the integration schemep. However, the result shown in Fig. 2 suggests such truncation
is unnecessary.

One practical problem is how we chose the radius of the ring. Though the expansion is
exact up to orderp, a ring of finite number of particles and finite radius has spurious high-
order multipole moment. Therefore, in order to make the truncation error small, we should
make the radius as small as possible. On the other hand, as we make the radiusr smaller,
the absolute values of the masses of particles diverge asr−p, since this factor directly enters
into the inverse transformation. Therefore, if we maker too small, the round-off error would
increase rapidly. In practice, the choice ofr = 0.75a makes the spurious high-order terms
sufficiently small, without noticeable effect on the round-off error. For the result shown in
Fig. 2 we usedr = 0.75. The error is not sensitive to the choice ofr , unless the required
accuracy is very high.

5. DISCUSSIONS

5.1. Relation to Anderson’s Method

Our pseudoparticle method and Anderson’s method are quite similar. Both approximate
the multipole expansion by a function on a circle (two dimensions) or a sphere (three
dimensions). The difference is that the value of potential is used in Anderson’s method and
the mass distribution itself is used in our method.

Both the potential and mass distribution are formally defined by the inverse transform
from the multipole expansion. The only difference lies in the multiplication factor applied
in the inverse transform.

One practical advantage of our method is that the calculation of the M2L part, which is
known to be the dominant part of the computation, is significantly simpler for our method.
Therefore, the overall calculation speed for the same expansion order would be faster for
our method.

In the case of the non-adaptive tree, one can pre-compute the translation matrix for the
M2L part. In this case, the calculation cost of our method and that of Anderson’s method is
essentially the same. In this case, theoretically, both schemes would be slightly slower than
the original FMM, since the number of points needed to express expansions up to orderp
is somewhat larger than the number of terms,(p+ 1)2.

If we view Anderson’s method as one way of expressing the multipole expansion, it
seems clear that there is room for improvement in the original formulation by Anderson.
In the first transform from physical particles to the values of potential on the outer ring,
he used the logr (or 1/r ) potential without truncation. This treatment naturally introduces
fictitious high-frequency terms in the potential on the ring. This is the reason why he had to
carefully choose the radius of the ring to suppress the high-order terms. These high-order
terms contaminate the values of the potential itself through aliasing, unless we make the
radius of the ring sufficiently large. On the other hand, if we make the radius of the ring too
large, the solution inside the ring tends to be quite inaccurate.

If we use the truncated form of the potential for the first conversion, the values of potential
on the ring always represent exact values of the multipole expansion, for any choice of the



FAST MULTIPOLE METHOD WITHOUT MULTIPOLES 919

radius of the ring. Thus, such a choice should improve the accuracy of Anderson’s method
significantly, without increasing the calculation cost.

In our method, untruncated potential is used in the M2L part. This also introduces the
high-order terms which are not in the original multipole expansion. However, this does not
cause much degradation in accuracy, since here it is guaranteed that the contribution of the
high-order terms is small.

5.2. Comparison with the Methods with Better Scaling

Recently, several methods which reduce the cost of the translation of the multipole ex-
pansion fromO(p4) to O(p3) have been proposed [16, 8]. White and Head-Gordon [16]
described a very clever transformation, in which they rotate the coordinates so that the axis of
symmetry becomes parallel to the line which connects the two centers of expansion. The cost
of the rotation isO(p3), and the translation along the symmetry axis is alsoO(p3). Green-
gard and Rokhlin [8] described a more complex method with theoretically better scaling.

Timing results reported [16, 8] indicate that these new methods, like the method described
in [5], are advantageous only for pretty large values ofp. For example, White and Head-
Gordon [16] reported themaximumspeedup overO(p4) FMM of a factor of 2.5 forp= 21.
Typical speedup forp= 21 was around a factor of two.

In practice, for many problems expansions of order 2 to 8 give sufficient accuracy. For
these problems, our method will be competitive with these new methods. Of course, a
careful and detailed timing comparison under realistic circumstance will be necessary to
draw a firm conclusion.

5.3. Implementation on Special-Purpose Computers

Our group has developed a series of special-purpose computers for theN-body problem
[14, 12]. The basic function of these machines is to evaluate and accumulate the grav-
itational interaction between particles. Though a modified version of the tree algorithm
has been implemented on these machines [10], previously only the monopole (effectively
dipole) approximation could be used, since the hardware could only calculate the interaction
between point particles.

In our pseudoparticle method, the high order expansion is expressed by means of particles,
which means we can use the special-purpose hardware to evaluate high order expansion.
Our pseudoparticle method combined with special-purpose hardware will provide a very
large speed advantage over FMM or tree algorithms on general-purpose computer.

5.4. Possibility of Using Less Number of Pseudoparticles

As we discussed in Subsection 3.1, the present implementation uses a rather large number
of particles to represent the multipoles. This is because we put a stringent restriction to the
placement of particles: We fix the positions and only vary the mass of particles. This restric-
tion makes it possible to obtain the mass of particles using linear convolution. However, this
is certainly not optimal. For example, it is clear that a monopole can be exactly expressed by
one particle, while our method requires two. In the case of gravitational potential, a dipole
term can also be expressed by one particle placed at the center of mass, while our method
requires four. A quadrupole can be expressed by four particles, while our method requires
12. For these low-order expansions, it would be relatively easy to obtain the location of
particles without actually solving the nonlinear equation.
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For orders higher than 2, the calculation cost of solving the nonlinear equation would be
too high.

6. CONCLUSION

In this paper I presented a new representation of the multipole expansion used in the tree
algorithm and FMM. In the new method, the gravitational field due to the multipole expan-
sion is approximated by the potential due to a set of pseudoparticles on a ring or a sphere.

The new method is quite similar to Anderson’s method, which uses the value of potential
itself on a ring. However, compared to Anderson’s original algorithm, the new method is
more accurate for the same number of points.

On a general-purpose computer, the performance of the new method and Anderson’s
method would be practically the same. However, when combined with special-purpose
computers, the new method offers a huge advantage, since the evaluation of the multipole
expansion can be done on a hardware which is specialized to the calculation of the interaction
of point particles.
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